NON-LOCAL/LOCAL IMAGE FILTERS USING FAST EIGENVALUE FILTERING
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ABSTRACT In this paper, we propose a method to apply the Chebyshev poly-
nomial approximation (CPA) [18-20] to eigenvalue ltering. The

In this paper, we propose a fast and an approximate solution gfpproximation can be represented by multiplication of a matrix and
non-local/local lters using Chebyshev polynomial approximation 3 vector. Therefore, its computational complexity is substantially
(CPA). A non-local/local Iter is generally expressible in a matrix reduced especially in the case of sparse matrices. We also present
form. From the matrix notation, image denoising performance iy SURE-based parameter optimization method which uses the CPA
improved by Itering the eigenvalues of the Iter matrix. However, pecause a part of the estimation can be formulated as eigenvalue |-
it requires much execution time due to computational complexity otering of non-local/local Iters [12—16], implying that we can reduce
eigendecomposition. To reduce the computational cost, we apply thfle computational cost of the parameter optimization. Furthermore,
CPA to eigenvalue ltering, leading to an eigendecomposition-freethe approximate precision is suf ciently high because the CPA is the
procedure. Moreover, a fast SURE-based parameter optimization igproximation of minimax polynomial. In the experiment of image
possible by using the CPA. It enables us to determine a suitable Igenoising, our method shows better performance both in computa-
tering parameter ef ciently. Numerical examples illustrate that thetjgn speed and approximate precision.

proposed method is signi cantly faster than conventional methods  Thijs paper is organized as follows. Section 2 brie y reviews the

while it maintains high approximate precision. CPA. Firstly, the CPA for scalar functions, which is the normal form,
Index Terms— Chebyshev polynomial approximation, eigen- iS described, and then it is extended to the eigenvalue lter. Section
value Itering, denoising, non-local/local Iter, SURE 3 presents a method to improve non-local/local Iters using the CPA.

We verify our method through image denoising, which is discussed
in Section 4. Finally, Section 5 concludes the paper.
1. INTRODUCTION Notations Upper case bold-face letters indicates matrices. Su-
perscript T and ! are the transpose and the inverse of the matrix,
In image processing and computer vision, image restoration, e.grespectively. The matrix is the identity matrix. Theé, norm is
denoising, inpainting and debluring, has been important topics ange ned askx Kp :=( iN:1 ixijP)¥™P (8x 2 RV).
is still a challenging task [1]. Many image restoration methods are

based on non-local/local lters, e.g., bilateral Iter (BF) [2—6], non-
local means (NLM) [7], trilateral lter (TF) [8,9] and so on. Since 2. EIGENVALUE FILTERING USING CHEBYSHEV

they suf ciently smooth images while preserving their important im- POLYNOMIAL APPROXIMATION

age information such as edges and textures, they have been widely . L
used so far. 2.1. Chebyshev Polynomial Approximation for Scalar Func-

In general, a non-local/local lter is expressible using a ma-t'ons
trix [10]. This matrix expression enables us to compute eigenvalThe CPA [18-20] gives an approximate solution of a real-valued
ues and eigenvectors of Iters. Talebi et al. [11] has reported thafynction (Iter kernel) h(y) de ned on the intervaly 2 [ 1;1],

the lter performance is further improved bitering its eigenval-  which is the truncated version of the following Chebyshev series:
ues In addition, eigenvalue ltering can be optimized by minimiz- p

ing the estimation of mean squared error (MSE) in the perspective of h(y) = co+ o &Tk(y); (1)
SURE [11-16]. However, those Itering and optimization methods

require large sparse matrices, and the computational cost of eigendeherec, denotes a Chebyshev coef cient described later Bin(d)
composition for the matrices becomes expensive. Therefore, the pdenotes thé-th order Chebyshev polynomials of rst kind de ned
rameter(s) of eigenvalue Itering and the SURE-based optimizatioras

method are only available in limited situations. To address this prob- Tk (y) := cos(k arccosfy)): (2
lem, Talebi and Milanfar proposed a method which approximately

- - . It can also be de ned and computed by the stable recurrence relation:
calculates eigenvalues and eigenvectors from a pre- Itered image

(GLIDE [17]), and it works faster than exact decomposition-based T =2vT, T .
methods. However, improving the approximation accuracy still re- <) : y ) 1(y)_ .k 2(y); ?3)
quires high computational costs. To(y)=1; Tauy)=y:

This work was supported in part by MEXT Tenure-Track Promotion Pro- The initial condition is de ned byTo(y) andT1(y). Since this poly-
gram. nomial consists of cosine functions, the valueTe{y) is bounded



Eigenvalue decomposition Furthermore, the eigenvalue Iter functidth(A) can also be repre-
w > Xw SwXy! sented as follows using( #) in (1):
X! ¢Ew Xw H(A)= Xadiag(h( £);:::5h( 2)icinh( o)Xt (8)

Eigenvalue filtering

Sincec, of (5) is given by (4), this resulting matrix ltered By( 2 )

is approximately derived by the truncated version of (5). This deriva-
tion realizes eigenvalue lItering without eigendecomposition. In
particular, this method is usually faster than exact methods based
on eigendecomposition whex is a sparse matrix. It is because the
dominant computational complexity comes from the multiplication
of two matrices.

SURE-based parameter optimization
W Fast eigenvalue filtering via CPA Estimati
> for some p 5| Estimation of MSE 3. IMPROVED DENOISING FILTER USING CHEBYSHEV
Y H(W,p), H(W,p)(y +b) o POLYNOMIAL APPROXIMATION
Popt = arg min &g In image denoising, the non-local/local Iter is improved by eigen-
v value ltering as illustrated in Fig. 1(a), where an arbitrary non-
Popt local/local lter is represented by a Iter matri?v 2 R" ". Its
h 4 eigendecomposition, however, requires high computational com-
.| Fasteigenvalue filtering via CPA ~ plexity as mentioned above. To overcome this problem, the CPA
d H(W, Popt )y —>x is applied to eigenvalue ltering. Furthermore, the optimal Iter
kernels of eigenvalue Itering are associated with the minimization
(b) of the estimated MSE calculated by SURE [12-16]. The calcula-

tion can partially be substituted by eigenvalue Itering. Fig. 1(b)
shows the whole procedure of the proposed method. The CPA is
exploited to calculatéd (W ; p) andH (W ; popt ) ef ciently. Here,

popt denotes the optimal parameter.

Fig. 1. The eigenvalue lter corresponding to non-local/local lters.
(a) Existing eigenvalue ltering. (b) Proposed fast eigenvalue lter-
ing using SURE-based parameter optimization via CPA. In (aje-
notes a multiplication operator which givgs= X Wlx, q’°= %q
andk = Xw g° Note thatH (W ; p) andH (W ;popt) in(b) arecal- 31 past Eigenvalue Filtering using Chebyshev Polynomial Ap-
culated by our CPA-based method, i.e., elgenvalue-decomposﬂmr&oximation

free.

Let a noise signal be 2 R", where we assume zero-mean white
Gaussian noise with a standard deviatiorThe noisy image is rep-
resented by = x + e wherex 2 R" denotes a vectorized original
image. The non-local/local Itering method using the CPA and (5)

R R .
o =2 1l Tp()l’)hy(;/)dyz 2, cosk )h(cos )d: (4) isrepresented by

between landlfory 2 [ 1;1]. UsingTk(y) and the orthogonal-
ity of sine waves, the Chebyshev coef cientis calculated as

P
— . - 1 1 .
2.2. Chebyshev Polynomials Approximation for Eigenvalue Fil- b=HW:py = 30l + o aT(W)y; ©)

tering Method ) ) ) )
wherep is the parameter of a Iter kernel described in (11). Addi-

Here, we consider the matrix version of the CPA. Let an arbitrantionally, the Itered image using the Chebyshev polynomials is given
full rank matrix beA 2 R" " and its eigendecomposition e = by

1 non; : H _
Xa aX,' whereX 2AR |ithe ma'i\rlx.compo.sed of eigen Tk(W)y =2W T 1(W)y Tk 2(W)y: (10)
vectorsand Ao =diag( 1 ;:::; {;:::; n)isthe diagonal ma- ) S _ _
trix with the corresponding eigenvalues on the diagonal. Note thathis multiplication of a large sparse matrix and a vector drastically
the eigenvalues of non-local/local lters are generally bounded bereduces the computational cost compared to exact decomposition. In
tween landil,ie., » 2 [ 1;1], and this allows us to apply the this paper, we set a lter kernel of eigenvalue Itering in (1) experi-
CPA to the eigenvalues. From the above, the CPA of the matrix fornnentally as

gives an approximate solution of an eigenvalue Iter functibfA ) (
whose Chebyshev series is de ned as W P. e W
1 Py h¥y=" ‘" > ' 7 (12)
H(A):= 3¢l + | &Tk(A); 5) 0; otherwise

where thek-th order polynomial of the matrix form is de ned as ) ) o ) o
wherep is an arbitrary real number and it is determined by minimiz-

Te(A) := Xadiag(cosk 1;:::;cosk i;:::;cosk )X, " (6) ing the estimated MSE in the perspective of SURE (see Sec. 3.2 for
Similar to (3), its Chebyshev polynomials are obtained by using théletails). The approximate precision of (11) according to the approx-
recurrence relation: imation orderk is indicated in Fig. 2. Even when we use a lower

degree polynomial approximation, our method can almost be identi-
Tk(A)=2ATk 1(A) T« 2(A): (") calto the exact method.
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Fig. 2. Using a random signal 2 [ 1;1], h(r) is calculated by

using (11) withp = 8. They are experimented by the exact method

using eigendecomposition and CPA. The CPA is calculated, By
and10 degree polynomial approximations.

3.2. SURE-based Parameter Optimization

We represent the estimated MSE in the perspective of SURE [12-16]

as follows:
2
. %kb Yk + szivy(b) 2, (12)

where divy () is the divergence operator over.
H (W ;p) into (12) gives

Substituting

1 2%
"s=_KHWipy yki+ S —divy(H(W:p)y) °

22X @y 2

n oo @y

1
= —kH (W ;p)y yk; +

2
:%kH(W;p)y yk3 + ZTtrace(H(W;p)) 2. (13)

Unfortunately, the computational cost is still enormous since (13)
requiresH (W ;p) to computetrace(H (W ;p)). To address this

Table 1. The computation time of eigenvalue ltering for the BF.

Methods [[ Image size] Time (s)
64 64 56.34
Exact method (Fig. 1(a))[ 128 128 3998.95
256 256 | Out of memory
64 64 1.1
GLIDE [17] 128 128 7.18
256 256 102.58
64 64 0.35
Ours 128 128 0.59
256 256 2.56

Finally, by differentiating (16) with respect tq the divergence term
is derived as follows:

lim Ebbe(WH:p(y +"b) Wuip(y)g
"0

=trace fdw ., ()9

_xn@)i
Y

i=1

=div y (H(W ;p)y);

a7

which is equivalent to the second term of the rst line in (13). How-
ever, the limit cannot be derived since the actual in nite values can-
not be expressed by existing computer. In practice, we can compute
the divergence by using the approximation of the derivative [16] as

divy (H(W;p)y) b" (Whp(y +b) Whp(y):
Since (18) is calculated bk (W ; p)y andH (W ;p)(y + b), the
computational cost of (13) is substantially reduced by using the CPA.
Practically,"s is calculated by somp, and then the optimgbopt
which minimizes's (see Fig. 1(b)) is determined.

(18)

4. EXPERIMENTAL RESULTS

problem, we compute the divergence term approximately withouli.1. Experimental Condition

derivingH (W ; p) inspired by [16].

We introduce a linear operator denotigu ;» (y), and a zero-
mean independent random vector with unit variabce R". Using
the second-order Taylor expansidd, » (y + "b), where" 2 Riis
a positive number in the vicinity dJ, can be written as

Whp(y +"b)= Whp(y)+ "Jwy b+ "rw o (¥)

(14)
wheredy ,, . (y) is the Jacobian matrix o i ;p (y) andrw ,, ., (y)
is the remainder term. It is further transformed as

bT(Whp(y +"b)  Whp(y))
= "D Jw b+ Py Lt (15)
Additionally, the expectation w.r.b of (15) is derived as
Eofb" (Whp(y +"b) Whp(y)g
=Ebf"D Jw yp b+ 2D Ty, ()9

n2

=" tracefJw ,, , )9+ "“Enfb 1w, (,H@  (16)

In image denoising, we examine the effectiveness of our method for
the computation speed and the approximate precision using the BF
and the NLM. Three eight-bit grayscale imagkena Parrot, and
Monachscaled to three size64 64, 128 128 and256 256
pixels are used for experiments. Then, zero-mean white Gaussian
noise with = 40;50and60 are added to the images. The parame-
terpin (11) is determined by minimizing the estimation of the MSE
described in Section 3.2. In the case of the BIS varied from5 to

10in steps of:1, and also, in the case of the NLM, varied fr@nto

5in steps of0:1. Our method is compared with the GLIDE [17] to
validate the computation time and the denoising performance, where
the eigenvalue and the eigenvector are approximately derived from
1% pixels of the pre- ltered image We use theé30th degree poly-
nomial approximation to calculaté (W ; p)y. All algorithms were
implemented in MATLAB and run on 2.9 GHz Intel Xeon E5-2690
processor.

1This setup is the same as that in [17], which gives a good trade-off be-
tween the computational speed and the denoising performance.
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Fig. 3. Denoising results usingarrotin = 50. (a) Original 56 256). (b) BF. (c) GLIDE using BF. (d) Ours using BF. () Noisy (PSNR:
14.13 dB). (f) NLM. (g) GLIDE using NLM. (h) Ours using NLM.

Table 2. Denoising performance: PSNR (dB) 270
Images | [ 40 [ 50 | 60 340 -
Noisy | - | 16.06 | 14.13 | 12.54 3% 250

BE : gzm

2218 19.26 | 16.83 g
NLM 26.32 | 25.25| 23.47 ; o
GLIDE using BF | 25.25| 23.70 | 21.33 810 —Estimation \ ——Estimation
Lena | GLIDE using NLM | 26.41 | 25.41 | 24.65 T e o E
Ours using BF | 25.62 | 24.60 | 23.72 A T
Ours using NLM | 26.46 | 25.57 | 24.71 (@) (b)
BF 21.83| 19.03 | 16.68
NLM 25.53 | 24.41 | 22.71 Fig. 4. MSE estimation result in SURE usiarrotin = 50. (a)
parrot | CLIDEusing BF | 24.42| 22.89| 21.70 Ours using BF. (b) Ours using NLM.
GLIDE using NLM | 25.64 | 24.71 | 24.03
Ours using BF 24.48 | 23.31 | 22.24
Ours using NLM | 25.89 | 24.95| 24.03 than other methods. Furthermore, our method using the NLM out-
BF 21.89| 19.05| 16.69 performs the other methods because our method could accurately
NLM 25.26 | 24.07 | 22.30 Iter the eigenvalues.
Monarch GLIDE using BF | 24.54 | 22.78 | 21.09 Finally, Fig. 4 shows the results of the estimation of MSE for
GLIDE using NLM | 25.49 | 24.29 | 23.44 somep. The estimation is not exactly equal to the true MSE but the
Ours using BF 24.41 | 23.20 | 22.07 optimized parametep is almost identical to that giving the lowest
Ours using NLM | 25.63 | 24.41 | 23.50 MSE.
5. CONCLUSIONS
4.2. Image Denoising In this paper, we presented the improvement of the non-local/local

Iters using the Chebyshev polynomial approximation. Owing to

Table 1 shows the computation time of the GLIDE and our methodts simple computation, our method can achieve fast eigenvalue |-
with = 50. As one can see, the GLIDE and our method can rapidiytering and SURE-based optimization using the CPA. Furthermore,
Iter eigenvalues compared to the exact decomposition methods, eshas high approximate precision as veri ed in the experiment. In
pecially for large scale images. the denoising application, our method obtained better subjective and

Fig. 3 shows the IteredParrot images. Our methods maintain objective qualities than the conventional methods as well as the sig-
details of the image while denoising performance in smooth regionai cant reduction of noise. This strategy could be applied to more
are suf cient. The objective denoising performance is shown in Tacomplex and redundant lters, e.g., BM3D [21]. Our future work
ble 2. The performance of our methods and the GLIDE is gratemcludes such implementations.
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