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ABSTRACT

In this paper, we propose a fast and an approximate solution of
non-local/local �lters using Chebyshev polynomial approximation
(CPA). A non-local/local �lter is generally expressible in a matrix
form. From the matrix notation, image denoising performance is
improved by �ltering the eigenvalues of the �lter matrix. However,
it requires much execution time due to computational complexity of
eigendecomposition. To reduce the computational cost, we apply the
CPA to eigenvalue �ltering, leading to an eigendecomposition-free
procedure. Moreover, a fast SURE-based parameter optimization is
possible by using the CPA. It enables us to determine a suitable �l-
tering parameter ef�ciently. Numerical examples illustrate that the
proposed method is signi�cantly faster than conventional methods
while it maintains high approximate precision.

Index Terms— Chebyshev polynomial approximation, eigen-
value �ltering, denoising, non-local/local �lter, SURE

1. INTRODUCTION

In image processing and computer vision, image restoration, e.g.,
denoising, inpainting and debluring, has been important topics and
is still a challenging task [1]. Many image restoration methods are
based on non-local/local �lters, e.g., bilateral �lter (BF) [2–6], non-
local means (NLM) [7], trilateral �lter (TF) [8, 9] and so on. Since
they suf�ciently smooth images while preserving their important im-
age information such as edges and textures, they have been widely
used so far.

In general, a non-local/local �lter is expressible using a ma-
trix [10]. This matrix expression enables us to compute eigenval-
ues and eigenvectors of �lters. Talebi et al. [11] has reported that
the �lter performance is further improved by�ltering its eigenval-
ues. In addition, eigenvalue �ltering can be optimized by minimiz-
ing the estimation of mean squared error (MSE) in the perspective of
SURE [11–16]. However, those �ltering and optimization methods
require large sparse matrices, and the computational cost of eigende-
composition for the matrices becomes expensive. Therefore, the pa-
rameter(s) of eigenvalue �ltering and the SURE-based optimization
method are only available in limited situations. To address this prob-
lem, Talebi and Milanfar proposed a method which approximately
calculates eigenvalues and eigenvectors from a pre-�ltered image
(GLIDE [17]), and it works faster than exact decomposition-based
methods. However, improving the approximation accuracy still re-
quires high computational costs.

This work was supported in part by MEXT Tenure-Track Promotion Pro-
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In this paper, we propose a method to apply the Chebyshev poly-
nomial approximation (CPA) [18–20] to eigenvalue �ltering. The
approximation can be represented by multiplication of a matrix and
a vector. Therefore, its computational complexity is substantially
reduced especially in the case of sparse matrices. We also present
a SURE-based parameter optimization method which uses the CPA
because a part of the estimation can be formulated as eigenvalue �l-
tering of non-local/local �lters [12–16], implying that we can reduce
the computational cost of the parameter optimization. Furthermore,
the approximate precision is suf�ciently high because the CPA is the
approximation of minimax polynomial. In the experiment of image
denoising, our method shows better performance both in computa-
tion speed and approximate precision.

This paper is organized as follows. Section 2 brie�y reviews the
CPA. Firstly, the CPA for scalar functions, which is the normal form,
is described, and then it is extended to the eigenvalue �lter. Section
3 presents a method to improve non-local/local �lters using the CPA.
We verify our method through image denoising, which is discussed
in Section 4. Finally, Section 5 concludes the paper.

Notations: Upper case bold-face letters indicates matrices. Su-
perscript�T and�� 1 are the transpose and the inverse of the matrix,
respectively. The matrixI is the identity matrix. Thè p norm is
de�ned askxkp := (

P N
i =1 jx i jp )1=p (8x 2 RN ).

2. EIGENVALUE FILTERING USING CHEBYSHEV
POLYNOMIAL APPROXIMATION

2.1. Chebyshev Polynomial Approximation for Scalar Func-
tions

The CPA [18–20] gives an approximate solution of a real-valued
function (�lter kernel) h(y) de�ned on the intervaly 2 [� 1; 1],
which is the truncated version of the following Chebyshev series:

h(y) := 1
2 c0 +

P 1
k =1 ck Tk (y); (1)

whereck denotes a Chebyshev coef�cient described later andTk (�)
denotes thek-th order Chebyshev polynomials of �rst kind de�ned
as

Tk (y) := cos( k arccos(y)) : (2)

It can also be de�ned and computed by the stable recurrence relation:

Tk (y) = 2 yTk � 1(y) � Tk � 2(y);

T0(y) = 1 ; T1(y) = y:
(3)

The initial condition is de�ned byT0(y) andT1(y). Since this poly-
nomial consists of cosine functions, the value ofTk (y) is bounded



Fig. 1. The eigenvalue �lter corresponding to non-local/local �lters.
(a) Existing eigenvalue �ltering. (b) Proposed fast eigenvalue �lter-
ing using SURE-based parameter optimization via CPA. In (a),
 de-
notes a multiplication operator which givesq = X � 1

W x , q0 = � 0
W q

andbx = X W q0. Note thatH (W ; p) andH (W ; popt ) in (b) are cal-
culated by our CPA-based method, i.e., eigenvalue-decomposition-
free.

between� 1 and1 for y 2 [� 1; 1]. UsingTk (y) and the orthogonal-
ity of sine waves, the Chebyshev coef�cientck is calculated as

ck = 2
�

R1
� 1

Tk ( y ) h ( y )p
1� y 2

dy = 2
�

R�
0 cos(k� )h(cos� )d�: (4)

2.2. Chebyshev Polynomials Approximation for Eigenvalue Fil-
tering Method

Here, we consider the matrix version of the CPA. Let an arbitrary
full rank matrix beA 2 Rn � n and its eigendecomposition beA =
X A � A X � 1

A , whereX A 2 Rn � n is the matrix composed of eigen-
vectors and� A = diag( � A

1 ; : : : ; � A
i ; : : : ; � A

n ) is the diagonal ma-
trix with the corresponding eigenvalues on the diagonal. Note that
the eigenvalues of non-local/local �lters are generally bounded be-
tween� 1 and1, i.e., � A

i 2 [� 1; 1], and this allows us to apply the
CPA to the eigenvalues. From the above, the CPA of the matrix form
gives an approximate solution of an eigenvalue �lter functionH (A )
whose Chebyshev series is de�ned as

H (A ) := 1
2 c0 I +

P 1
k =1 ck Tk (A ); (5)

where thek-th order polynomial of the matrix form is de�ned as

Tk (A ) := X A diag(cosk� 1 ; : : : ; cosk� i ; : : : ; cosk� n )X � 1
A : (6)

Similar to (3), its Chebyshev polynomials are obtained by using the
recurrence relation:

Tk (A ) = 2 A Tk � 1(A ) � T k � 2(A ): (7)

Furthermore, the eigenvalue �lter functionH (A ) can also be repre-
sented as follows usingh(� A

i ) in (1):

H (A ) = X A diag(h(� A
1 ); : : : ; h(� A

i ); : : : ; h(� A
n ))X � 1

A : (8)

Sinceck of (5) is given by (4), this resulting matrix �ltered byh(� A
i )

is approximately derived by the truncated version of (5). This deriva-
tion realizes eigenvalue �ltering without eigendecomposition. In
particular, this method is usually faster than exact methods based
on eigendecomposition whenA is a sparse matrix. It is because the
dominant computational complexity comes from the multiplication
of two matrices.

3. IMPROVED DENOISING FILTER USING CHEBYSHEV
POLYNOMIAL APPROXIMATION

In image denoising, the non-local/local �lter is improved by eigen-
value �ltering as illustrated in Fig. 1(a), where an arbitrary non-
local/local �lter is represented by a �lter matrixW 2 Rn � n . Its
eigendecomposition, however, requires high computational com-
plexity as mentioned above. To overcome this problem, the CPA
is applied to eigenvalue �ltering. Furthermore, the optimal �lter
kernels of eigenvalue �ltering are associated with the minimization
of the estimated MSE calculated by SURE [12–16]. The calcula-
tion can partially be substituted by eigenvalue �ltering. Fig. 1(b)
shows the whole procedure of the proposed method. The CPA is
exploited to calculateH (W ; p) andH (W ; popt ) ef�ciently. Here,
popt denotes the optimal parameter.

3.1. Fast Eigenvalue Filtering using Chebyshev Polynomial Ap-
proximation

Let a noise signal bee 2 Rn , where we assume zero-mean white
Gaussian noise with a standard deviation� . The noisy image is rep-
resented byy = x + e wherex 2 Rn denotes a vectorized original
image. The non-local/local �ltering method using the CPA and (5)
is represented by

bx = H (W ; p)y =
�

1
2 c0 I +

P 1
k =1 ck Tk (W )

�
y ; (9)

wherep is the parameter of a �lter kernel described in (11). Addi-
tionally, the �ltered image using the Chebyshev polynomials is given
by

Tk (W )y = 2 W Tk � 1(W )y � T k � 2(W )y : (10)

This multiplication of a large sparse matrix and a vector drastically
reduces the computational cost compared to exact decomposition. In
this paper, we set a �lter kernel of eigenvalue �ltering in (1) experi-
mentally as

h(� W
i ) =

( �
� W

i

� p
; if � W

i � 0;
0; otherwise;

(11)

wherep is an arbitrary real number and it is determined by minimiz-
ing the estimated MSE in the perspective of SURE (see Sec. 3.2 for
details). The approximate precision of (11) according to the approx-
imation orderk is indicated in Fig. 2. Even when we use a lower
degree polynomial approximation, our method can almost be identi-
cal to the exact method.
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Fig. 2. Using a random signalr 2 [� 1; 1], h(r ) is calculated by
using (11) withp = 8 . They are experimented by the exact method
using eigendecomposition and CPA. The CPA is calculated by2, 5
and10 degree polynomial approximations.

3.2. SURE-based Parameter Optimization

We represent the estimated MSE in the perspective of SURE [12–16]
as follows:

" s :=
1
n

kbx � y k2
2 +

2� 2

n
div y (bx ) � � 2 ; (12)

where div y (�) is the divergence operator overy . Substituting
H (W ; p) into (12) gives

" s =
1
n

kH (W ; p)y � y k2
2 +

2� 2

n
div y (H (W ; p)y ) � � 2

=
1
n

kH (W ; p)y � y k2
2 +

2� 2

n

nX

i =1

@bx i

@yi
� � 2

=
1
n

kH (W ; p)y � y k2
2 +

2� 2

n
trace(H (W ; p)) � � 2 : (13)

Unfortunately, the computational cost is still enormous since (13)
requiresH (W ; p) to computetrace(H (W ; p)) . To address this
problem, we compute the divergence term approximately without
derivingH (W ; p) inspired by [16].

We introduce a linear operator denotingW H ;p (y ), and a zero-
mean independent random vector with unit varianceb 2 Rn . Using
the second-order Taylor expansion,W H ;p (y + "b), where" 2 R is
a positive number in the vicinity of0, can be written as

W H ;p (y + "b) = W H ;p (y ) + "JW H ;p ( y ) b + " 2rW H ;p ( y ) ;
(14)

whereJW H ;p ( y ) is the Jacobian matrix ofW H ;p (y ) andrW H ;p ( y )

is the remainder term. It is further transformed as

bT (W H ;p (y + "b) � W H ;p (y ))

= "bT JW H ;p ( y ) b + " 2bT rW H ;p ( y ) : (15)

Additionally, the expectation w.r.t.b of (15) is derived as

Eb f bT (W H ;p (y + "b) � W H ;p (y ))g

= Eb f "bT JW H ;p ( y ) b + " 2bT rW H ;p ( y ) g

= " tracef JW H ;p ( y ) g + " 2Eb f bT rW H ;p ( y ) g: (16)

Table 1. The computation time of eigenvalue �ltering for the BF.
Methods Image size Time (s)

Exact method (Fig. 1(a))
64 � 64 56.34

128� 128 3998.95
256� 256 Out of memory

GLIDE [17]
64 � 64 1.1

128� 128 7.18
256� 256 102.58

Ours
64 � 64 0.35

128� 128 0.59
256� 256 2.56

Finally, by differentiating (16) with respect to" , the divergence term
is derived as follows:

lim
" ! 0

Eb f bT (W H ;p (y + "b) � W H ;p (y ))g
"

= trace f JW H ;p ( y ) g

=
nX

i =1

@bx i

@yi

= div y (H (W ; p)y ); (17)

which is equivalent to the second term of the �rst line in (13). How-
ever, the limit cannot be derived since the actual in�nite values can-
not be expressed by existing computer. In practice, we can compute
the divergence by using the approximation of the derivative [16] as

div y (H (W ; p)y ) � bT (W H ;p (y + b) � W H ;p (y )) : (18)

Since (18) is calculated byH (W ; p)y andH (W ; p)( y + b), the
computational cost of (13) is substantially reduced by using the CPA.
Practically," s is calculated by somep, and then the optimalpopt

which minimizes" s (see Fig. 1(b)) is determined.

4. EXPERIMENTAL RESULTS

4.1. Experimental Condition

In image denoising, we examine the effectiveness of our method for
the computation speed and the approximate precision using the BF
and the NLM. Three eight-bit grayscale images,Lena, Parrot, and
Monachscaled to three sizes,64 � 64, 128 � 128, and256 � 256
pixels are used for experiments. Then, zero-mean white Gaussian
noise with� = 40 ; 50 and60 are added to the images. The parame-
terp in (11) is determined by minimizing the estimation of the MSE
described in Section 3.2. In the case of the BF,p is varied from5 to
10 in steps of0:1, and also, in the case of the NLM, varied from0 to
5 in steps of0:1. Our method is compared with the GLIDE [17] to
validate the computation time and the denoising performance, where
the eigenvalue and the eigenvector are approximately derived from
1% pixels of the pre-�ltered image1. We use the30th degree poly-
nomial approximation to calculateH (W ; p)y . All algorithms were
implemented in MATLAB and run on a2:9 GHz Intel Xeon E5-2690
processor.

1This setup is the same as that in [17], which gives a good trade-off be-
tween the computational speed and the denoising performance.



Fig. 3. Denoising results usingParrot in � = 50 . (a) Original (256� 256). (b) BF. (c) GLIDE using BF. (d) Ours using BF. (e) Noisy (PSNR:
14.13 dB). (f) NLM. (g) GLIDE using NLM. (h) Ours using NLM.

Table 2. Denoising performance: PSNR (dB)
Images � 40 50 60
Noisy – 16.06 14.13 12.54

Lena

BF 22.18 19.26 16.83
NLM 26.32 25.25 23.47

GLIDE using BF 25.25 23.70 21.33
GLIDE using NLM 26.41 25.41 24.65

Ours using BF 25.62 24.60 23.72
Ours using NLM 26.46 25.57 24.71

Parrot

BF 21.83 19.03 16.68
NLM 25.53 24.41 22.71

GLIDE using BF 24.42 22.89 21.70
GLIDE using NLM 25.64 24.71 24.03

Ours using BF 24.48 23.31 22.24
Ours using NLM 25.89 24.95 24.03

Monarch

BF 21.89 19.05 16.69
NLM 25.26 24.07 22.30

GLIDE using BF 24.54 22.78 21.09
GLIDE using NLM 25.49 24.29 23.44

Ours using BF 24.41 23.20 22.07
Ours using NLM 25.63 24.41 23.50

4.2. Image Denoising

Table 1 shows the computation time of the GLIDE and our method
with � = 50 . As one can see, the GLIDE and our method can rapidly
�lter eigenvalues compared to the exact decomposition methods, es-
pecially for large scale images.

Fig. 3 shows the �lteredParrot images. Our methods maintain
details of the image while denoising performance in smooth regions
are suf�cient. The objective denoising performance is shown in Ta-
ble 2. The performance of our methods and the GLIDE is grater
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Fig. 4. MSE estimation result in SURE usingParrot in � = 50 . (a)
Ours using BF. (b) Ours using NLM.

than other methods. Furthermore, our method using the NLM out-
performs the other methods because our method could accurately
�lter the eigenvalues.

Finally, Fig. 4 shows the results of the estimation of MSE for
somep. The estimation is not exactly equal to the true MSE but the
optimized parameterp is almost identical to that giving the lowest
MSE.

5. CONCLUSIONS

In this paper, we presented the improvement of the non-local/local
�lters using the Chebyshev polynomial approximation. Owing to
its simple computation, our method can achieve fast eigenvalue �l-
tering and SURE-based optimization using the CPA. Furthermore,
it has high approximate precision as veri�ed in the experiment. In
the denoising application, our method obtained better subjective and
objective qualities than the conventional methods as well as the sig-
ni�cant reduction of noise. This strategy could be applied to more
complex and redundant �lters, e.g., BM3D [21]. Our future work
includes such implementations.
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